Isoxazoles. XVIII. Synthesis and Pharmacological Properties of 5-Aminoalkyl- and 3-Aminoalkylisoxazoles and Related Derivatives

Hideo Kanō, Ikuo Adachi, Ryonosuke Kido, ${ }^{1}$ and Katumt Hirosf
Shionogi Research Laboratory, Shimogi \& Co., Ltd., Fukushima-ku, Osalin, Jrapan

Received September 24, 1966
Revised Manuscript Received December 15, 1966

Abstract

A number of 3 -substituted 5 -aminoalkyl- and 5 -substituted 3 -aminoalkylisoxazoles and some related amino alcohols have been prepared for pharmacological testings. Besides ordinary transformations of the corresponding alcohols and acetyl derivatives to the aminoalkyl derivatives and amino alcohols, a convenient synthetic method for the 5 -aminoalkyl series which involves 1,3 -dipolar cycloaddition of nitrile oxides to aminoalkynes has been developed. Several of the compounds proved to exhibit a wide spectrum of pharmacological properties which inchule potent. hypothermic, analgesic, antiinflammatory, and antitussive :activities.

In continuing a program of studies of chemistry and utilization of isoxazole derivatives, ${ }^{2}$ we attempted to synthesize a series of 3 -aryl-5-aminoalkyl- and 5 -aryl-3aminoalkylisoxazoles (I and II). The system I structurally resembles that of 3 -aryl-ö-aminoalkyl-1,2,4oxadiazoles (III) which was reported to possess a variety of pharmacological activities: hypothermic, analgesic, antiinflammatory, and antitussive. ${ }^{3}$ A num-

ber of compounds of type I were prepared by an extension of the elegant synthetic method of isoxazole derivatives which involves the 1,3 -dipolar cycloaddition of nitrile oxides to triple-bonded compounds. ${ }^{4}$ The requisite dipolarophiles for the synthesis of I , aminoalkynes (V), were prepared in two ways: by the method of Marszalk, et al. ${ }^{5}$ (amination of the corresponding bromides), and by the method of Campbell, et al. ${ }^{6}$ (reaction of sodium acetylide with aminoalkyl bromides). Five known nitrile oxides (VI) ${ }^{7}$ used as dipoles in the present cycloaddition are readily obtainable from the corresponding hydroxamyl chlorides (IV). However, these oxides are liable to dimerize into furoxan derivatives (VII). ${ }^{7}$ In order to suppress this dimerization during the cycloaddition reaction, compounds IV were added to a solution of V and triethylamine in benzene by a modification of the method of Huisgen, ${ }^{4}$ and the desired compounds were obtained in considerable yields. The compounds prepared by

[^0]
this procedure (method A) and their salts are listed in Table I.

All compounds of type II and some compounds of type I were prepared stepwise from the isoxazole alcohols (VIIIa-c and IXa-c) (method B, Table I). Chloroalkyl derivatives (VIIId-f and IXe, f) were obtained by the same procedure reported for the preparation of 3 -chloromethyl derivative IXd. ${ }^{8}$ Treatment of VIIId-f and IXd-f with appropriate secondary anines gave the desired products, I and II. However, with the chloroethyl derivatives, VIIIe and IXe, this reaction gave the corresponding vinyl derivatives as by-proclucts. The compounds VIIIb and VIIIc were prepared by cycloaddition of VI with 1-butyn-4-ol ${ }^{9}$ and 1-butyn3 -ol, ${ }^{10}$ respectively, according to the procedure reported ${ }^{11}$ for the preparation of VIIIa. The alcohols IXa-c were obtained by reduction of the corresponding esters (IXg^{12} - i) with lithium aluminum hydride and the ester IXh was prepared in two ways: by esterification of the corresponding 3 -acetic acid (IXj) whic:l

VIIIa, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{IXa}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$
b, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
b, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
c, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$
$\mathrm{c}, \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OH}$
d, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Cl}$
e, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
$\mathrm{d}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{Cl}$
$\mathrm{f}, \mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$
$\mathrm{e}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
$\mathrm{f}, \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{Cl}$
$\mathrm{g}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}^{1{ }^{12}}$
$h, R=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$
$\mathrm{i}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CO}_{2} \mathrm{H}_{5}$
i, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{COOH}$
$\mathrm{k}, \mathrm{R}=\mathrm{COCHN}$

[^1]

vo.	R
1	$\mathrm{C}_{6} \mathrm{H}_{5}$
2	$\mathrm{C}_{6} \mathrm{H}_{5}$
3	$\mathrm{C}_{6} \mathrm{H}_{5}$
4	$\mathrm{C}_{6} \mathrm{H}_{0}$
5	Cill:
6	C.ilt
7	$\mathrm{C}_{6} \mathrm{H}_{5}$
8	$\mathrm{C}_{6} \mathrm{H}_{5}$
9	$\mathrm{Cif}_{6} \mathrm{H}_{5}$
10	$\mathrm{C}_{6} \mathrm{H}_{5}$
11	$\mathrm{C}_{6} \mathrm{H}_{5}$
12	$\mathrm{C}_{6} \mathrm{H}_{5}$
13	Cb_{6}
14	$\mathrm{C}_{6} \mathrm{H}$
15	$\mathrm{C}_{6} \mathrm{H}_{3}$
16	$\left({ }_{6} / \mathrm{H}_{5}\right.$
17	${ }_{6} \mathrm{H}_{5}$
18	$\mathrm{C}_{6} \mathrm{H}_{4}$
19	C, Cl_{1}
20	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
21	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
22	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
23	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
24	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
25	$p-\mathrm{ClC}_{4} \mathrm{H}_{4}$
26	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$

27	$p-\mathrm{MeOC}_{6} \mathrm{II}_{4}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMM}_{2}$	A	58.5	169 (3)	189-190	E	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	59.46	6.77	9.91	59.94	6.91	9.69	\%
28	$p-\mathrm{Mc}^{\left(\mathrm{OC}_{6} \mathrm{H}_{4}\right.}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NEt}_{2}$	A	65.8	181 (3)	175-176	E	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HICl}$	61.83	7.46	9.02	61.65	7.50	8.88	2
29	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$		A	56.5	68-69	217-218	E	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{IICl}$	63.25	7.18	8.68	62.96	7.18	8.58	5
30	$p-\mathrm{Me}\left(\mathrm{C}_{6} \mathrm{II}_{4}\right.$		A	70.0	106-107	222-224	W	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$	59.16	6.52	8.63	59.09	6.65	8.71	\checkmark
31	2-Pyridyl	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$	A	46.1	126 (2)	110-111	$\mathrm{K}-\mathrm{MI}$	$\mathrm{C}_{18} \mathrm{H}_{2 \mathrm{a}} \mathrm{N}_{3} \mathrm{O}_{8}{ }^{\text {b }}$	52.81	5.66	10.27	52.32	6.03	9.98	
32	2-Pyridyl	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NEt}_{2}$	A	55.1	127 (1)	150-151	II	$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{8}{ }^{\text {b }}$	54.91	6.22	9.61	55.10	6.41	9.36	
33	2-Pyridyl		A	38.9	153 (1)	218-219	E	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{HCl}$	61.32	6.86	14.30	61.10	7.00	14.17	
34	3-Pyridyl	$\mathrm{CH}_{2} \mathrm{CII}_{2} \mathrm{NEt}_{2}$	A	30.6	159 (3)	151-152	M	$\mathrm{C}_{20} \mathrm{I}_{27} \mathrm{~N}_{3} \mathrm{O}_{8}{ }^{\text {b }}$	54.91	6.22	9.61	55.01	6.41	9.24	
35	$\mathrm{CII}_{2} \mathrm{NME}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	B	70.0	132 (2)	223-225	E	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}$	60.37	6.33	11.74	60.25	6.67	11.11	
36	$\mathrm{CH}_{2} \mathrm{NET}_{2}$		B	78.2	144 (3)	163-164	E	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}$	63.51	7.23	10.59	63.19	7.28	10.47	
37	$\mathrm{CH}_{2} \mathrm{~N}^{\square}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	B	87.8		225-227	E	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}$	64.62	6.87	10.05	64.64	6.91	10.15	
38		$\mathrm{C}_{6} \mathrm{H}_{5}$	B	94.6	91-92	217-219	E	$\mathrm{C}_{14} \mathrm{IH}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{IICl}$	59.89	6.10	9.98	60.16	6.20	9.92	
39		$\mathrm{C}_{6} \mathrm{H}_{5}$	B	24.0	150 (2)	190-191	E	$\mathrm{C}_{14} \mathrm{II}_{16} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}$	63.51	6.47	10.58	63.73	6.51	10.31	
40	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	B	50.0	133 (4)	139-140	E	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{\text {b }}$	55.87	5.92	6.86	56.04	6.10	6.77	
41	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NEt}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	B	61.0	146 (2)	145-146	K	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{\text {b }}$	57.79	6.47	6.42	57.82	6.56	6.38	
42	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N} \square$	$\mathrm{C}_{6} \mathrm{H}_{5}$	B	77.1	49-50	108-109	E	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{\text {b }}$	58.92	6.29	6.25	88.85	6.36	6.26	5
43		$\mathrm{C}_{6} \mathrm{H}_{5}$	B	66.0	95.5-96.5	223-224	L	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{IICl}$	61.17	6.50	9.50	61.15	6.70	9.51	+
44		$\mathrm{C}_{6} \mathrm{H}_{5}$	B	45.2	\ldots	188.5-190	E	$\mathrm{C}_{15} \mathrm{II}_{18} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HlCl}$	64.62	6.87	10.105	64.84	6.93	10.32	年
45	$\left(\mathrm{HOHCH}_{2} \mathrm{~N} \longrightarrow\right.$	$\mathrm{C}_{6} \mathrm{H}_{5}$	C	78.1	107-108	143-145	E	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{9}{ }^{\text {b }}$	61.94	6.57	7.60	62.13	6.72	7.55	
46		$\mathrm{C}_{6} \mathrm{H}_{5}$	C	60.0	139-140	189-190	E	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HlCl}$	57.97	6.16	9.02	58.37	6.33	9.37	込
47		$\mathrm{C}_{6} \mathrm{H}_{5}$	B	47.4	\ldots	189-190	K	$\mathrm{C}_{17} \mathrm{H}_{2:} \mathrm{N}_{2} \mathrm{O} \cdot \mathrm{HICl}$	66.54	7.55	9.13	66.39	7.67	9.29	-
48	$\mathrm{CHOHCH}_{2} \mathrm{CH}_{2} \mathrm{~N} \square$	$\mathrm{C}_{6} \mathrm{H}_{5}$	C	92.9	\ldots	174-176	E	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	63.25	7.18	8.68	63.14	7.37	8.56	
49		$\mathrm{C}_{6} \mathrm{H}_{5}$	C	93.0	\ldots	204-206	E	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$	59.17	6.52	8.63	59.42	6.62	8.70	
50	$\mathrm{CH}_{2} \mathrm{NE}^{\prime} \mathrm{t}_{2}$	Me	B	37.4	85 (0.1)	114-115	E	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{\text {b }}$	49.99	6.71	7.77	49.87	6.64	7.59	
51		Me	B	33.8	90 (0.1)	188-190	F	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{IICl}$	55.42	7.91	12.93	55.44	7.80	12.72	
52		Me	B	14.0	92 (0.1)	182-183	E	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	49.43	6.91	12.81	49. .54	6.98	12.64	
53	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NEt}_{2}$	Me	B	23.4	75 (0.5)	150-151	E	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{\text {b }}$	51.33	7.00	7.48	51.51	7.11	7,31	
54	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{\square}$	Me	B	44.1	104 (0.8)	195-196	E-K	$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{IICl}$	57.26	8.30	12.14	56.90	8.52	12.46	
55		Me	B	34.2	\ldots	209-210	E	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	51.61	7.37	12.04	51.45	7.52	12.29	
56		Me	B	33.9	$84(0.7)$	165-166	K	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}$	55.42	7.91	12.93	55.20	8.11	12.94	
${ }^{a} \mathrm{E}$,	hanol; K, Aceto	thanol: W, wa	rat												\pm

was obtained from IXd via cy:mation and subsequent hydrolysis, and by the Arndt Fistert reation with i-phenyl-3-isoxazolecarhonyl chloride through the : diazoacetyl derivative (IXk). The ester IXi was obtained from IXe by a similar reaction sequence ats used fre the preparation of IXh from IXd.

For comparison of phamacological activities, seven a-metlyy analogs were prepared from ethyl j-methyl-3isoxazolecaboxylate ${ }^{13}$ in a method simila to that used for the $\begin{aligned} \text {-phenemperices. }\end{aligned}$

As further struetural variations of I and II, a series of 3 -phenyl- 5 - and z-phenyl- 3 -(α-hydroxy- ω-aminoalkyl)isoxazoles (XIII and XV) were synthesized. The: corresponding i- and 3-acetyl derivatives (X) were served as the pertinent starting compounds for the preparation of both XIII :und XV. Compound $\underset{\text {. }}{ }$ (${ }^{\prime}=3$-phenyl-i)-isoxazolyl) was prepared in good yidel hy oxidation of VIIIe although some other methots are avail:able. ${ }^{14}$ Another derivative of type $\mathrm{X}\left(\mathrm{Y}^{-}=\right.$i)-phenyl-3-isoxazolyl) was prepared by the reaction of a-phenylisoxazole-3-carboxy chloride with ethoxymagucsium dicthylmalonate followed by decarboxylation of the resulting β-keto ester. Bromination of X with bromine gave the corresponding bromoacetyl derivatives (XI) which underwent reaction with piperidine and morpholine to give the amino ketones (XIIa and XIIlı, respectively). The 3 -chloroacetyl derivative obtained by treating IXk witl HCl was also available in place of XI $\left(Y^{-}=Y^{3}\right)$. Attenipts to obtain dimethyland diethylamino analogs of XII failed owing to extensive tar formation. Mannich reactions with X gave the corresponding aminopropionyl derivatives (XIV: •)

Finally the amino ketones, XIIa, b and XIVa-c, were reduced with sodium borohydride to yield the amino alcohols (XIIIa, b and XVa-c, respectively) (method C). Free bases of XII are unstable and XIIa ($\mathrm{Y}=\mathrm{Y}^{5}$) is especially liable to decompose into a tarry matcrial; accordingly $\mathrm{XIIa}\left(\mathrm{Y}=\mathrm{Y}^{3}\right)$ was used in the subsequent reaction as its hydrochloride. The compounds prepared by method C were converted to their hydrochlorides and are listed in Table I.

Pharmacology

Methods.-Most of the compounds listed in Table I were evaluated by the following methods.

The acute toxicity was determined in mice. The subcutaneous $\mathrm{LD}_{\text {son }}$'s were calculated by the Bliss

[^2]method ${ }^{10}$ an the basis of results ohtaincel in 24 har after the injertion.

The hyputhernice activity was studied by measmring the rectal temperature of the mouse every 30 or 60 min after : subcutaneous injection of the test connpound. Miee were kept in individu:a cage in :1n alim conditioned rom (2030).

A modifict Heffiner's methot ${ }^{16}$ was used for estimating antalgesie activity. The test compound :umd $3.5 \mathrm{mog} / \mathrm{kg}$ of morphine were simultancously injecterl in the noouse subcutancously. When the mouse did not attempt to remove a clip pinching its tail within 1.1 sec, it was considered that the test compound elicited a complete analgesic action. The ED in $_{\text {was caleulater }}$ hy the up and down mothod of Brownlec, et al. ${ }^{17}$

Fore evaluating the analgesic -antinflammatory activity, a foot licking method was devised in our lanher:atory. ${ }^{18}$ As a phogistic agent, $0.0{ }^{-1} \mathrm{ml}$ of 3.7% formaldehyde was subentaneously injected inta the dorsal par of hind patw of the rat. Since the amimal frequently licked its inflamed paw in order to allevinte the pain, this syndrome was called the "foot licking response." The response frequency of the normal rat is usually 1500 tines for 50 min after formaldelivide. injection. For the determination of analgese :untiinflammatory activity. the test rompound w:s injected subeutancously, and 10 min later fommaldehyde was injected into the dorsal pant of the himel pant. The test componnd was determined to he effective in the test when the frequency of lieking was less than fon times in 50 min of olsservation. The E'D $\mathrm{D}_{\text {a }}$. was calculated by the up and down method. ${ }^{17}$

The antiinflanmatory activity was deternined by me:asuring the thickness of the inflamed foot produced by : 111 injection of 0.05 ml of 3.7% formaldelyode inta the dorsal part of the hind paw of the rat. The thinkness was measured by a nierodial gatuge. The detail procedure for avaluation was as follows. On the first d:y, the thickntess of swelling of the left hind p:ow was measured at 1,2 , and 3 hir after the injection of formaldehyde without administration of any test compound and the mean ralue was used as the control. On the second day, the test compound was administered subentancously to the same :mimals. Thirty minutes later, fornaldehyde solution was injected as the phlogistic agent into the right hind paw of cach :miniml. The thickness of swelling was measured by the same procedure as on the first day. The antiinflammatory activity was calculated as the percentage inhibicion hy comparing the mean valuc obtaned with the right paw on the second day with that obtained with the left jaw on the first day in cach individual aninata.

The antitussive activity was studied on guine: jigs. The method was essentially that of Winter and Flataker. ${ }^{19}$ Thirty minutes after subcutancous injection of the test compound, the animal was placed into a transparent plistic box and inhaled NH_{3} for 25 ace. Soon after removing the animal from the box, the antitussive activity was evaluated by obscrving whether :

[^3]Table II
Analgesic, Antinnflammatoley, and Antitussive Phoperities of Isoxazole Deriyatives ${ }^{a}$

No.	Acute toxicily (mouse) $\mathrm{LD}_{\text {bo }}, \mathrm{mg} / \mathrm{kg}$	$\begin{gathered} \text { Hypothermic } \\ \text { test }{ }^{\text {b }} \\ \text { (mouse) } \\ 100 \mathrm{mg} / \mathrm{kg} \end{gathered}$	$\begin{gathered} \text { Analbesic } \\ \text { activity } \\ \text { (mouse) } \\ E D_{\text {bo }} \text {) } \mathrm{mg} / \mathrm{kg} \end{gathered}$	$\begin{gathered} \text { Analgesic- } \\ \text { antiinflammatory } \\ \text { activity (rat) } \\ \text { EDso. mg/kg } \end{gathered}$	Antin- flammatory activity ${ }^{d}$ (rat) formalin edema $100 \mathrm{mg} / \mathrm{kg}$	$\begin{gathered} \text { Antitussive } \\ \text { activity } \\ \text { (guinea pig) } \\ \text { EDoso. mg/kg } \end{gathered}$
1		-1.7			8	
2	>1000	-0.6	156	>300	3	>110
3	600-700	-4.2	102	> 300	4	>110
4	>1000	-2.9	147	200-300	17	>110
5	400	-4.3	72	166	19	>110
6	682	-1.2	>400	220	24	>110
7	350-400	-0.4	100		9	51
8	398	-4.3	78	79	34	54
9	706-800	-3.8	68	100-150	27	>110
10	411	-2.4	77	63	38	72
11	231	-3.4	32	150-200	33	
12	800-1000	-1.7	143	>300	4	
13	800-1000		71	>300	22	
14	400-600	-7.7	37	42	44	31
15	800-1000	-4.8	68	69	26	>65
16	186	-4.7	57	17	44^{9}	28
17	600-800	-3.2	159	70-120	30	>65
18	407	-3.7	63	50-70	40^{8}	45
19	800-1000	-3.7	134	100-200	40	>65
20	1000	-1.5	298	>330	3	52
21	768	-5.7	164	>330	7	>6.5
23	438	-1.7	128	94	24	>65
24	297	-7.0	61	72	25	42
27	325	-1.8	73	87	25	>65
28	417	-1.0	184	86	38	44
29	159	-1.7	>150	75	36	36
30	>1000	-4.2	181	207	29	>65
31	800-1000	-1.1	290	150-250	4	>65
32	700-900	-1.0	109	150-250	4	>65
33	200-300	-4.5	100	44	27	38
34	$500-600$	-0.4	177	100-150		
35	462	-2.5	113	135	31	>110
36	500-600	-1.4	55	185	22	>110
37	>500	-4.8	39	230	20	>111
38	>1000	-3.5	138	228	7	>110
39	212	-4.7	60	71	28	
40	460	-1.1	123	100-150	14	52
41	353	-1.5	133	40-60	31	30
42	443	-4.8	53	29	39	23
43	>800	-3.5	106	97	38	68
44	500-600	-3.0	93	33	35	29
45	416	-5.0	43	31	35	30
46	>600	-5.9	>100	42	30	
48	500	-2.5	73	43	35	21
49	970	-2.4	287	200-300	28	48
-0	800-1000	-1.3	391)-400	300-500	4	>110
51	135-142	-4.00	65	50-100	21	71
53	614	-0.5	400	137	6	71
54	153	-4.5	77	23	57	48
Oxolamine ${ }^{\text {f }}$	672	-1.3	105	223	11	41
Aminopyrine	373	-4.1	102	110	22	...
Phenylbutazone	439	-0.2	.	200	15	. .
Codeine	276	\ldots				35

\because All componads were administered by the subeutancons ronte. ${ }^{b}$ Maximum fall in body temperature in ${ }^{\circ} \mathrm{C}$. ${ }^{c}$ Halfner method with
 $1,2,4-0$ xodiazole. ${ }^{a} 50 \mathrm{mg} / \mathrm{kg}$.
fit of coughing occurred within 5 min . The ED_{50} was calculated by the up and down method. ${ }^{17}$

Results.-The results of the pharmacological tests are demonstrated in T:bble II together with those of three known nonnarcotics (oxolamine, aminopyrinc, and phenylbutazonc) and an antitussive agent (co-
deine) for comparison. Most of the compounds tested showed more or less hypothermic, analgesic, and antiinflammatory activities and several of then also exhibited antitussive activity.

Among the 49 compounds listed in Table II, 14, 16, 42, and 48 displayed relatively strong potencics. Their
:utalgesie or antiinff:mmatory activitics are 1.5 times, and their analgesic-antiinflammatory acdivities 313 times, those of the control analgesics. All four compounds showed slightly stronger antitussive activities than those of codeine and oxolaninc. Execpt for 16, the three others produced nearly the same. toxicities as phenylbutazone.

Although the results obtained m:ake it difficult to cestablish a clear relationship between chemical strueture and biological activity, the potencics seen to be accentuated in those compounds which have : piperi-dino- and morpholinoalkyl side chain ($n=\underline{-}$ and 3). Replacement of the phenyl substituent by $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$, pyridyl, or methyl groups resulted in no significant advantage in potency. It is noticeable that 14, which has an amino aleohol side chain is none potent and less toxie than the comesponding :mmoalkyl derivative 8 .

Experimental Section

Moling points were taken on : Kofter hot stage and are ancorrected. Infrared spectra were recorded with a Eoken infrired spectrophotometer, Model IR-S. Ultraviolet spertra were laken on a Hitachi recording spectruphotometer, EPS-2.

3-Dialkylaminopropynes ($\mathbf{V}, n=1$) were prepared in $50-81 \%$ vields from propargyl bromide in a procedure similar to that deveribed for 3-dimethylamintopropye:s 3-diethylaminopro-
 piperidinopropyne $\left(\mathbf{V}, \mathrm{NR}_{2}=\mathrm{N}^{+}\right.$) had h_{p} is- $63^{\circ}(\underline{2}) 11111$ i, yield 50% : 3-morpholinopropyne ($\mathrm{V}, \mathrm{NR}_{2}=\mathrm{NO}$) hat $1, p 70-74^{\circ}(18 \mathrm{~mm})$, yield 76.6%

4-Dialkylamino-1-butynes ($\mathbf{V}, \pi=2$) were prepared in 40 60% yields from the corresponding 2 -dialkylaminuethyl bromide hydrobromides and sodium acetylide in a manner similar to that for 4-diethylamino-1-butyne; 4 -dimethylamino-1-butyne (\mathbf{V}, NR: = NMer) had bp 105° (761 mm), yield 38.8%; 4 -piper-idino-1-butyne $(V, N R:=N)$, hat ho $69-71^{\circ}(13$ man) rield 41.1'c; 4-morpholino-1-butyne (V. NR: $=\mathbf{N O}$;

5-(2-Hydroxyethyl)-3-phenylisoxazole (VIIIb).--To : soluliun of benzohydroxamyl chloride ${ }^{7}(4.7 \mathrm{~g})$ and 1 -butyn-4-ol ${ }^{9}$ (4.3 g) in benzene (100 ml) was added $\mathrm{NEt}_{3}(6.0 \mathrm{~g})$ dropwise with stiring and cooling. The resulting mixture was stirred at 60° for 1 hr , Hen cooled and filtered. The filtrate was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was erystallized from benzene-ligroin (bp $100-120^{\circ}$) as colorless plates (4.4 g), mp $56-57^{\circ}, \lambda_{\max }^{95 \%}$ EtOH $242 \mathrm{~m} \mu(\log \in 4.194)$.

Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO} \mathrm{O}_{2}$: C, 69.82; $11_{\text {, }}$ 5.86; $\mathrm{N}, 7.40$. Found: C, 69.22; H1, 6.1; N, 7.16 .

5-(1-Hydroxyethyl)-3-phenylisoxazole (VIIIc).-- I', a solution of benzohydroxanyl chlorider $(22.3 \mathrm{~g})$ ant 1 -butwn-3-ol ${ }^{10}(10.0 \mathrm{~g})$ in benzene (160 ml) was added NE: (21.7 g) dropwise with - liming and cooling. The mixture war healed as clescribed above, and the rembting oil was distilled to give a palle yellow oil (1 s .1 g), 1) $14: 3144^{\circ}$ (11.8 11111).
 l'omm: ($\mathrm{C}, 60.58$: $11,5.90: \mathrm{N}, 7.70$.

5-Chloromethyl-3-phenylisoxazole (VIIId)--A sulutitn uf VllI:1 ${ }^{11}(9.7 \mathrm{~g})$ and $\mathrm{SOCl}_{2}(14.9 \mathrm{~g})$ in dry ether (1100 ml) was refluxed for 1 hr and then eviporated in racuo. The resulting crystalline product was recrystallized from ligroin to give colorless prisins (8.4 g), nıp $70-71^{\circ}$ (lit. ${ }^{7} \mathrm{mp} 65-66^{\circ}$).

Amal. Caled for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNO}$: C, 62.02; $\mathrm{H}, 4.16 ; \mathrm{N}, 7.24$.

5-(2-Chloroethyl)-3-phenylisoxazole (VIIIe).--A sohution, of $V I I b(4.4 \mathrm{~g})$ and suCl. $(5.0 \mathrm{~g})$ in diry ether $(15 \mathrm{ml})$ was trealled ar dereribed above Distillation al the residue gave a colortess oil (4.1 g), bp $134-136^{\circ}$ (:) 11111), which solidified on
 afforded colorless plates, mp :39-40.
 Finnud: C. 64.04: II, 4.90; N, 7.0 .1

5-(1-Chloroethyl)-3-phenylisoxazole (VIIIf)... A whinion , ol
 Heated ase deremed above. The reshlting oil was distilled 1, afford a colorles oil (18.0 g), h, $125-130^{\circ} 11.0 \mathrm{~mm}$), which odidified on standing at room temperamme. heorratalization from

 Fomul: (C, 64.01: H. 4.91: N. b. 144.

Ethyl 5-Phenyl-3-isoxazoleacetate (IXh). A.- A sohnion of $1 \mathrm{Xj}(32.8 \mathrm{~g})$ in absohte Fitult (330 mb) was refluxed wilh coll-
 The residne wis penmed onte iece and the resulting arystalline frodnct was eollected and washed with water. Kecrystallizalion from petrolemm other (b] $30-50^{\circ}$) gave cotortore nealles (35.s g)

 Fomlld: (. Gi.7. : H, -.se: N. 6.04.
 Ag.O (1).2 g was added pertiontrise and the mixhnte wat re
 in rarmo gelve the residne, which was laken np in hot pretrolemn cher. After cooling, the precipitated arolalline prodect was collected by fill ation and recryallized from petrodemm oble (bp $31-50^{\circ}$) wat give rolorkess necdle (1.16 g), mp) $45-51^{\circ}$, which were dentified with the sample obtained above by comperixor of their infrared spectra

Lthyl 5-phenyl-3-isoxazolepropionate (IXi) was fucpancel fofle

5-Phenyl-3-isoxazoleacetic Acid (IXj). A mixture of IX
 2 hr and then evaporated in varmo. After addition of CliCh. the (lll Cl_{3} solntion was wathed with water and concontrated. The residue was reflused with a sohtion of KOH (10 g) in 80 ' boH (280 mil) for 6 hr :and then eomentrated in vacuo. The sulnion, after addition of water, was washed with CIICla and acidified with $6, ~ \mathrm{HCl}$ lo give colorless mystals (164 g). I? crystallization from $70 C_{C}$ EtOH gave colothon necdles. min |T

 Found: (, $64.91 ; 11,4.54 ; \mathrm{N}, 6.59$.

3-Diazoacetyl-5-phenylisoxazole (IXK). . Fo al sohtion ail diazonethane in dry ether (ll) whed was frenhly prepared from

 shaking and roobing. The resulting revalline prodnct. after sanding overnight al loom temperatime, was collectod by filtration (24 ga : and rewrstallized from benzene lo give bale yellow platts. 111) $162-103)^{2}$ der.
 Found: C, 62.26: 11, 3.31 : N, 19.39.

3-Chloromethyl-5-phenylisoxazole (IXd).-A wolution of 1 Ny (63.3 .0 g) in dry cother (150 ml) was added dropwise 10 a sumpernion of I, iAll 4 (8.0 ge in dry elher (270 ml) with shaning and conling. The mixme was refluxed far 1.5 he. After embions addition of
 mated and the water beyer was extracted with chacr. 'the ermbined theral whation was wathed with water, dried o Na:-

 dowaibed for \backslash Illa 10 , vicld a colorless oil (44.7 g), b_{1} fis: (i) mmo. Which solidifiod on standing at room temperatime. Recryslallization lom ligroin gave colorless needles, mp 49.5-5! ${ }^{\circ}$

 Found: ($:$ 62.41: H, 4.32: N, 7.30 .

3-2-Chloroethyl)-5-phenylisoxazole (IXe). The enter IXh

ether (bp $30-50^{\circ}$) gave colorless prisms, $m p 61-62^{\circ}$, $\lambda_{\max }^{93 \%}$ veoh $262 \mathrm{~m} \mu(\log \epsilon 4.325)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}$: $\mathrm{C}, 63.62 ; \mathrm{H}, 4.85 ; \mathrm{N}, 6.75$. Folnd: C, $63.26 ; \mathrm{H}, 4.86 ; \mathrm{N}, 6.51$.

3-(3-Chloropropyl)-5-phenylisoxazole (IXf) was prepared from IXi in 18% yield by the same method as for IXe. The resulting crystalline product (1.9 g) was recrystallized from petroleum ether (bp $60-70^{\circ}$) as colorless needles, $\mathrm{mp} 55-56^{\circ}$.

Anal. Caled for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClNO}$; C, $6 \overline{9} .01 ; \mathrm{H}, \mathbf{5} .46 ; \mathrm{N}, 6.32$. Found: C, 64.94; H, 5.55; N, 6.20.

3-(2-Chloroethyl)-5-methylisoxazole was prepared stepwise in 4.2% yield from ethyl 5-methyl-3-isoxazolecarboxylate ${ }^{4}$ in a manner similar to that described for 5-phenyl analog; bp 102° (12 mm).

Anal. Caled for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{ClNO}: \mathrm{C}, 49.50 ; \mathrm{H}, \overline{5} .54 ; \mathrm{N}, 9.62$. Found: C, 48.83 ; H, 5.21 ; N, 9.21 .

3-Substituted 5-Aminoalkyl- (I) and 5-Substituted 3-Aminoalkylisoxazoles (II) and Their Salts.-Forty-seven compounds in Table I were prepared by the following general procedures and the bases obtained were converted to their salts (hydrochloride ol' citrate) by the ordinary procedure.

Method A.-Hydroxyamyl chloride IV (0.01 nole), dissolved in benzene (15 ml), was added to a solution of a dialkylaminoalkyne (0.01 mole) and triethylamine (0.02 mole) in benzene $(15 \mathrm{ml})$ dropwise with stirring and cooling. The resulting nixture was stirred at 60° for 1 hr , then cooled and acidified with 3% aqueous HCl . The aqueous layer was separated and the benzene layer was extracted with water. The combined aqueous solution was washed with benzene and made alkaline with 20% aqueons NaOH . The resulting solution was extracted with ether. The extract was washed with water, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and evaporated to give the desired product I, which was purified by distillation in vacuo or by recrystallization from the appropriate solvent.

Evaporation of the benzene layer gave the corresponding 3,4disubstituted furoxan which was identified by comparison of their infared spectra with those of an althentic sample.?

Method B.-A solution of 3- or 5-chloroalkylisoxazole (0.015 mole) and a secondary amine (0.045 mole) in toluene (20 ml) was heated at 110° for 8 hr (in a sealed tube if necessary), then cooled and acidified with 3% aqueous HCl . The water phase was separated, and the organic layer was extracted with water. The combined aqueous solution was treated as described for method A to yield the desired compounds, I and II.

5-Acetyl-3-phenylisoxazole ($\mathbf{X}, \mathbf{Y}=\mathbf{Y}^{5}$).-To a solution of VIIIc $(22.8 \mathrm{~g})$ in acetic acid (130 ml) was added a solution of $\mathrm{CrO}_{3}(8.22 \mathrm{~g})$ in acetic acid (120 ml) and water (10 ml) dropwise with stirring and cooling. After addition, the resulting mixture was stirred at room temperature for 2 hr , then kept at 50° for 30 min . After concentration in vacuo to ca. 50 ml , the mixture was poured on ice and the crystalline product was collected by filtration. Recrystallization from CCl_{4} gave colorless plates (18.8 g) , mp 106-107.5 ${ }^{\circ}$, $\lambda_{\text {пта }}^{05 \%}$ EtoH $238 \mathrm{~m} \mu$ ($\log \epsilon 4.386$). It was identified with authentic sample ${ }^{14}$ by comparison of their infrared spectra.

Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}: \mathrm{C}, 70.58 ; \mathrm{H}, 4.85 ; \mathrm{N}, 7.48$. Found: C, 70.55 ; H, 4.88 ; N, 7.70 .

3-Acetyl-5-phenylisoxazole ($\mathbf{X}, \mathbf{Y}=\mathbf{Y}^{3}$).-To a nixture of Mg turnings (5.4 g) and absolute $\mathrm{EtOH}(5 \mathrm{ml})$ was added CCl_{4} $(0.5 \mathrm{ml})$. After the reaction had proceeded for several minutes, a solution of diethyl malonate (35.2 g) and absolute $\mathrm{EtOH}(20 \mathrm{ml})$ in dry benzene (175 ml) was added dropwise with stirring at such a rate that rapid boiling was maintained. The mixture was heated under reflux for 1 hr to dissolve most Mg and after cooling at room temperature, 5-phenyl-3-isoxazolecarbonyl chloride $(41.5 \mathrm{~g})$ was added portionwise to the mixture. The nixiure was refluxed for 1 hr , then cooled, and shaken with 20% aqueons $\mathrm{H}_{2} \mathrm{SO}_{4}$ until all of the solid dissolved. The benzene phase was separated and the aqueous layer was extracted with benzene. The combined benzene solution was washed with water and evaporated. The residue was refluxed with AcOH $(72 \mathrm{ml})$ and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(2.0 \mathrm{~g})$ on an oil bath for 10 hr . After cooling, the mixture was poured on ice and the precipitated crystalline product (34.4 g) was collected by filtration. Recrystallization from petroleum ether (bp 60-70 ${ }^{\circ}$) gave colorless scales, $\mathrm{mp} 98-99^{\circ}$, $\lambda_{\text {max }}^{85 \%}$ EtOH $249 \mathrm{~m} \mu(\log \epsilon 4.18)$. This was identified with an authentic sample ${ }^{20}$ by comparison of their infrared spectra.

Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}: ~ \mathrm{C}, 70.58$; $\mathrm{H}, 4.55 ; \mathrm{N}, 7.48$. Found: C, $70.84 ; \mathrm{H}, 5.09$; N, 7.59 .

5-Bromoacetyl-3-phenylisoxazole ($\mathbf{X I}, \mathbf{Y}=\mathbf{Y}^{5}$).-To a solution of $\mathrm{X}\left(\mathrm{Y}=\mathrm{Y}^{-5}\right)(5.6 \mathrm{~g})$ in $\mathrm{CCl}_{4}(50 \mathrm{ml})$ was added bromine $(4.8 \mathrm{~g})$ dropwise with stirring. After stirring at room temperature for 6 hr , the precipitated crystalline product was collected by filtration and recrystallized from EtOH to give colorless plates (6.1 g), $\operatorname{mp} 116-117^{\circ}, \lambda_{\max }^{95 \% \mathrm{EtOH}} 240 \mathrm{~m} \mu(\log \epsilon 4.293)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BrNO}_{2}$: C, $49.6 \overline{5} ; \mathrm{H}, 3.30 ; \mathrm{N}, 5.27$. Found: C, 49.83; H, 3.11; N, 5.16.
3-Bromoacetyl-5-phenylisoxazole ($\mathbf{X I}, \mathbf{Y}=\mathbf{Y}^{3}$).-To a solution of $\mathrm{X}\left(\mathrm{Y}=\mathrm{Y}^{3}\right)(21.7 \mathrm{~g})$ in $\mathrm{CCl}_{4}(300 \mathrm{ml})$ was added a solution of bromine (18.7 g) in $\mathrm{CCl}_{4}(30 \mathrm{ml})$ in a similar way as above and the mixture was stirred for 3 hr . The resulting crystalline product (25.3 g) was recrystallized from benzene-petroleum ether (bp 60-70 ${ }^{\circ}$) to give colorless prisms, mp 129-130 ${ }^{\circ}$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BrNO}_{2}$: $\mathrm{C}, 49.65 ; \mathrm{H}, 3.03 ; \mathrm{N}, 5.26$. Found: C, 49.40; H, 3.16; N, 5.42.

3-Chloroacetyl-5-phenylisoxazole.-Into a suspension of IXk $(100 \mathrm{~g})$ in $\mathrm{CHCl}_{3}(2.0$ 1.) was passed dry HCl with stirring until no more N_{2} was evolved. The resulting solution was concentrated to $c a .500 \mathrm{ml}$ and petroleum ether (700 ml) was added to the solution. After cooling, the crystalline product was collected by filtration (95.7 g). Recrystallization from benzene-petroleun ether (bp $60-70^{\circ}$) gave colorless prisms, mp 131-132 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClNO}_{2}$: C, $\mathbf{5 9 . 6 1} ; \mathrm{H}, 3.64 ; \mathrm{N}, 6.32$. Found: C, 59.82 ; H, 3.65 ; N, 6.13.
$\mathbf{5}$-Morpholinoacetyl-3-phenylisoxazole (XIIb, $\mathbf{Y}=\mathbf{Y}^{\mathbf{j}}$).-To a solution of XI $\left(\mathrm{Y}=\mathrm{Y}^{5}\right)(1.33 \mathrm{~g})$ in benzene $(50 \mathrm{ml})$ was added morpholine $(1.10 \mathrm{~g})$ and the resulting mixture was stirred at 40° for 15 min and then filtered. The filtrate was acidified with 25% ethanolic HCl and the precipitated hydrochloride was collected by filtration. The salt, suspended in water, was made alkaline with 20% aqueons NaOH to give colorless crystals $(0.85 \mathrm{~g})$. Recrystallization from MeOH gave pale yellow prisms, $\mathrm{mp} 137-138^{\circ}, \lambda_{\max }^{83 \mathrm{Bt}} \mathrm{EEOH} 240 \mathrm{~m} \mu(\log \epsilon 4.251)$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.16; H, 5.92; N, 10.29. Found: C, 66.30 ; H, 5.95 ; N, 10.10 .

3-Piperidinoacetyl-5-phenylisoxazole (XIIa, $\mathbf{Y}=\mathbf{Y}^{3}$).-The 3-bromoacetyl derivative XI ($13.3 \mathbf{g}$), dissolved in acetone (160 ml), was added to a solution of piperidine (8.5 g) in acetone (85 ml) with stirring and cooling. After stirring at room temperature for 30 min , the precipitated piperidine hydrobromide was filtered off, and the filtrate was acidified with 25% ethanolic HCl . The precipitated hydrochloride was collected and recrystallized from MeOH -acetone to give colorless needles (12.9 g), mp 178-179 ${ }^{\circ}$ dec.

Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}: \mathrm{C}, 62.63 ; \mathrm{H}, 6.24 ; \mathrm{N}$, 9.13. Found: C, $63.03 ; \mathrm{H}, 6.39 ; \mathrm{N}, 9.03$.

The hydrochloride was converted to the free base (9.96 g), mp $108-109^{\circ}$, which is unstable in solution.

Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $71.09 ; \mathrm{H}, 6.71 ; \mathrm{N}, 10.36$. Foind: $\mathrm{C}, 71.15 ; \mathrm{H}, 6.83 ; \mathrm{N}, 10.32$.

3-Morpholinoacetyl-5-phenylisoxazole ($\mathbf{X I I b}, \mathbf{Y}=\mathbf{Y}^{3}$).-The 3 -chloroacetyl derivative (11.0 g) dissolved in benzene (400 ml), was added to a solution of morpholine (15.0 g) in benzene (200 ml). After stirring at 55° for 2 hr , the precipitated morpholine hydrochloride was filtered off, and the filtrate was treated as the above. The resulting crystalline product (7.3 g) was recrystallized from MeOH to give pale yellow plates, mp 134-135 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.16; H, $5.92 ; \mathrm{N}, 10.29$. Found: C, $66.34 ; \mathrm{H}, 5.99$; N, 9.99 .
5-(2-Piperidinopropionyl)-3-phenylisoxazole (XIVa, $\mathbf{Y}=\mathbf{Y}^{5}$).A mixture of $\mathrm{X}\left(\mathrm{Y}=\mathrm{Y}^{5}\right)(1.87 \mathrm{~g})$, piperidine hydrochloride $(1.22 \mathrm{~g})$, paraformaldehyde (0.45 g), concentrated $\mathrm{HCl}(0.03 \mathrm{ml})$, and dioxane (3 ml) was refluxed for 1 hr . After cooling, acetone was added and the precipitated hydrochloride was collected by filtration, washed with acetone, and dissolved in water. The solution was treated with aqueous NaOH as for XII and the resulting free base was crystallized from petroleum ether (bp $60-70^{\circ}$) to give colorless plates (1.76 g), mp $93-94^{\circ}$.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 71.80 ; \mathrm{H}, 7.09 ; \mathrm{N}, 9.85$. Found: C, 71.87; H, 7.31; N, 9.88.

5-(2-Morpholinopropionyl)-3-phenylisoxazole (XIVb, $\mathbf{Y}=\mathbf{Y}^{5}$). - A nixture of $\mathrm{X}\left(\mathrm{Y}^{-}=\mathrm{Y}^{5}\right)(1.87 \mathrm{~g})$, morpholine hydrochloride $(1.24 \mathrm{~g})$, paraformaldehyde (0.45 g), concentrated $\mathrm{HCl}(0.03$ $\mathrm{ml})$, and $\mathrm{EtOH}(3 \mathrm{ml})$ was treated as described above. The resulting crystalline product (1.29 g) was recrystallized from ligroin to give colorless prisms, $1 \mathrm{mp} 103-105^{\circ}$.

5-(2-Dimethylaminopropionyl)-3-phenylisoxazole (XIVc, Y =
 mimmer as above. It was reduced with Nabll willomi phrifleation.

3-(2-Piperidinopropionyl)-5-phenylisoxazole (XIVa. $\mathbf{Y}=\mathbf{Y}^{3_{3}}$. A mixture of $\mathrm{X}\left(\mathrm{Y}=\mathrm{Y}^{3}\right)(3.75 \mathrm{~g})$. piperidine hydrochloride (2.43g), paraformatdehyde (0.90 g), concentrated $11(1)$ (0.10 .5 mit. and dioxane (6 mb) waw heated to refinx. Alter 1 hr, parafomatdehyde (0.4$)^{-5}$) was added and reflnxing was continnol for 2 har. The remetion mixture was treated in a similar manmer to yied colorless cratals (3.60 g). Recratallization from fotrolemm Gher (hp $60-70^{\circ}$) gave edortes phates, mp $04-96^{\circ}$.
 F'omud: ($5,71.65$; JI, $7.1 \mathrm{~s}: ~ N, ~!!!)$.

3-(2-Morpholinopropionyl)-5-phenylisoxazole (XIVb. $\mathbf{Y}=\mathbf{Y}^{1}$).
 (2.47 g), paraformahlehyde $(0.90 \mathrm{~g})$, connentrated lfCl (1). 1 ml ; and Fioll (3 ml) was noated as the above The reshling prodnet consisted of colortess plates 13.20 g g, mp $112-113^{\circ}$, when (rystallized from benzene-petrolemm other (b) $60-\overline{6}\left(0^{\circ}\right)$.

Reduction of the Amino Ketones XII and XIV with $\mathbf{N a B H}_{4}$ (Table I, Method B). - The amino kerome (1).j) mole) was treated
 cooling, the resulting somion was acielified with deOH and

- maporated in mutu. After addition oi 20\% anneons Naboll, the mixture was extracted with benzene and the extrone was washed widh water, dried over anhydrons $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated. 'lhe residne was disadved in hot 1 Co aquenns HCl ancl the soln-

 : ((α-hydroxy- ω-ammand wore eonverted to their hydrochlorides by the ordinary procednes.

Hydrochloride of 5-(1-Hydroxy-2-piperidinoethyl)-3-phenyl-

 50 for 1.5 har, was cooled in an iee hath. acidified wibl low atmens II (l, and evaperated in remo. The residne, after addi-
 extaed was washed wilh water, and dried (hollai. bateration of the solvent left colontes crysins whith give its hydrechoride by the ordinary procedure.

Acknowledgment.-The anthors thathk 1'rofersin Fimeritus E. Ochia of Tokyo E-niversity and Dr. K. laked: Director of this Laboratory. for continued conemagement. They are indebted to members of the Analytieal Section of this Laboratory for clemental :m:lys.\%.

Phenylindencs and Phenylindans with Antireserpine Activity ${ }^{1}$

 (fharles M. Combs, ano Donatid G. lasikin

Received Vomember 18, 1966

Abstract

 maiority of the phenytimene derivatives was prepared by the alkytation of phenytindene with manoalky are reported in detail. An mequivoeal synthesis of one isomer type, 1 -aninoalkyl- 1 -phenylindene, is deveribed. The intan derivative were prepared by hydrogenato of the erresponding indenes. The indene derivalives, pariculaty $1-i^{2}$-dine hylaninoedhy)-i-phenylindene (2 , were latmd to have potent ativity in the prevention of reserpinc-indned ptosis in mice, a test which has becn med as a criterion far andepressant ativits. ha addition, several of the indene and indan derivative have exhibited significan antispasmodie and antiseromin activity:

Aminoalkyl derivatives of diphenylmethme and its trieyelie analoges such as the phenothiazines have rereived emsiderable attention as useful pharmatcological :ugents. ${ }^{2:}$ The 1 - and 3 -phenylindene ring systems :twell as the indan :unalogs also incorporate the diphenylmocthane moicty. A serics of aminoalkyl derivatives of phenylindence :and phenylindan I-IX ($\mathrm{R}=$:aminoalkyl) was prepared and tested for a wide variety of activities associated with the diphenylmethane derivatives. Although compounds h:aving the general formulas VI and IX are not diphenylnethane derivatives, we have included them for comparison purposes.

During the course of this investigation, the interesting phiann:cologic:ll properties of the dibenzocyeloheptenes were reported. ${ }^{\text {ghe }}$ Examination of molcular models
(11 (al presemted in part at the 149twational Meeting of the American Chemical Society, Detroit, Mich... Ipril 1965., Abstract. p 17N: (b) K. N. Camplell. U. S. Patent 2.884, +6 (1959): K. N. Cainplell. D. F.. Rivard,

I

IV

VII

11

V

VIII
indiates that the two lenzence rings in the plenelindenes and phenylindans cem be spacially oriented in mued the sanne manner as in the dibenzocyeloleptenes

[^0]: (1) To whom all inquires concerning pharmacology should be sent.
 (2) Part XVII: H. Kanō. M. Ogata, and I. Adachi. Ann. Rept. Shionogi Res. Lab., 14, 44 (1964).
 (3) (a) G. Palazzo. M. Tavella. G. Strani, and B. Silverstrini. J. Med. Pharm. Chem., 4, 351 (1961): (b) B. Silverstrini and C. Pozzatti, Arzneimit-tel-Forsch.. 12, 539 (1962): 13, 798 (1963).
 (4) (a) A. Quilico in "The Chemistry of Heterocyclic Compounds." Vol. 17, R. H. Wiley, Ed.. Interscience Publishers. Inc.. New York. N. Y., 1962. p 19: (b) R. Huisgen, Angew. Chem. 75. 604 (1963).
 (5) I. Marszak, I. P. Guermont, and R. Epstein, Mém. Services Chim. Etat (Paris). 36, 301 (1951); Chem. Abstr. 48, 8724 (1954).
 (6) K. N. Campbell, E. C. Factora, and B. K. Campbell, J. Org. Chem.. 17, 1141 (1952).
 (7) (a) A. Werner and H. Buss, Chem. Ber., 27, 2197 (1894); (b) A. Werner and C. Block. ibid.. 32, 1979 (1899); (c) C. R. Kinney, E. W. Smith, L. Wooley, and A. R. Willey, J. Am. Chem. Soc., 65, 3418 (1933): (d) R. Paul and S. Tchelitcheff, Bull. Soc. Chim. France. 2215 (1962).

[^1]: (8) C. Musante. Gazz. Chim. Ital., 71, 553 (1941).
 (9) K. E. Schulte and K. P. Reis. Chem. Ber. 86, 777 (1953).
 (10) A. D. Macullum. U. S. Patent 2,125.384 (1938): Chem. Abstr.. 32, 7480 (1938).
 (11) E. Mugnaini and P. Grünanger. Atti Accad. Naz. Lincei. Rend. Classe Sci. Fis. Mat. Nat., 14, 95 (1953): Chem. Abstr., 49, 3948 (1955).
 (12) A. Angeli. Chem. Ber., 23, 2159 (1891).

[^2]: (13) Reference 4a, p 86
 (14) (a) P. Grünanger and S. Mangiaıin, (idzz, Chim, Jtil., 88, 1.1!i (195.8): (1.) 1. Pancont. ilacl., 73, 19) (1943).

[^3]: (15) C. T'. Bliss. Ann. Appl. Bipl, 22, 134, 307 (1935).
 (16) T. Ogawa, Foliu Pharmacol. Japun. 54, 195 (1958).
 17) K. A. Brownlee. J. 1. Modges, Ir., and M Rosenblat. J. 1 m . S/a/is/. Assuc.. 48, 262 (1953).
 (18) K. Hirose, M. Bigyt, and R. Kide. min.olblislied wonk.
 (10)613.

